



# ТСО для СТО

Считаем совокупную стоимость владения Kubernetes-платформой

# Артём Гениев

□ ageniev@express42.com

# Директор по консалтингу, «Экспресс 42»

- С 2001 года работаю в ИТ
- С 2012 года работаю в ИТ-консалтинге
- С 2024 года работаю в компании «Флант»



# СЭФЛАНТ



Продуктовое подразделение, разработчик продуктов для построения надёжной enterprise-инфраструктуры



Комплексное DevOpsсопровождение инфраструктуры в режиме 24/7 силами выделенной DevOps-команды



DevOps-консалтинг.
От анализа узких мест в ИТ-процессах до создания роадмапа изменения ИТ для реализации цифровой трансформации

Синергия опыта вендора, сервисной и консалтинговой компании

# Программа

- 1. Что такое TCO применительно к K8s–платформам и зачем её считать?
- 2. Из каких компонентов складывается TCO K8s-платформы?
- 3. Как оценить вклад каждого компонента и на что обратить внимание?
- 4. Пример сравнения TCO DIY-платформы и Deckhouse Kubernetes Platform
- 5. Как оценить возврат инвестиций при переходе на DKP?
- 6. Выводы и итоги
- 7. Ответы на вопросы





Что такое TCO применительно к K8s-платформам и зачем её считать?



# Совокупная стоимость владения (ТСО)

#### Комплексная оценка затрат

на информационную технологию и иных [связанных с ней] затрат в рамках предприятия за период времени. ТСО для информационной технологии включает в себя затраты на приобретение оборудования и ПО, управление, поддержку, коммуникации, обучение, а также потери, связанные с простоем систем или снижением производительности труда



**Gartner** 

Ссылка

#### Зачем считать ТСО?

## Для принятия финансово информированных решений

1

#### Проекты развития

Обоснование инвестиционных проектов и их бюджетов

2

#### Оценка вариантов

Дополнительный фактор при выборе технологии и/или поставщика

3

#### Стратегия

Поиск возможностей для оптимизации затрат, сокращения потерь и/или устранения блокеров роста доходов

4

#### Разработка

Планирование развития коммерческих платформ с опорой на создаваемую для клиентов ценность



## Насколько точным должен быть расчёт ТСО?

Если нечто имеет существенное значение для организации, его можно измерить и выразить в финансовых терминах

У нас всегда больше данных, чем необходимо для базовых вычислений



Определить что-то с недостаточной точностью всегда лучше, чем не определять или угадывать

Точность вычислений не должна быть максимально возможной, её должно быть достаточно для принятия решения



### Используемые подходы, методики и бенчмарки



Total Economic Impact Methodology

Forrester



Экспертный опрос

DevOps-специалисты DaaS и пользователи Deckhouse Kubernetes Platform



The ROI of DevOps
Transformation

Google whitepaper



Service Costing Process

**VMware** 



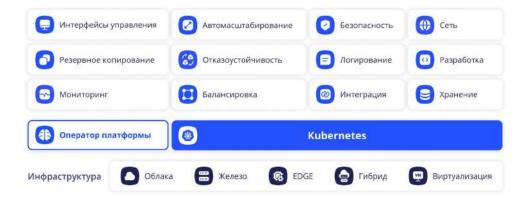
Метод сервисных операций

Cleverics



Подготовка к production

Рекомендации Deckhouse для промышленных инсталляций DKP


## Kubernetes-платформа

# Комплексное решение корпоративного класса

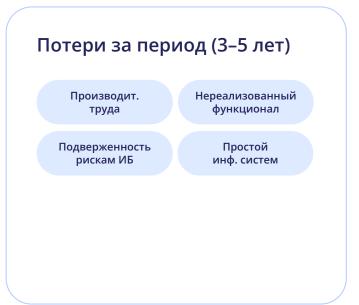
для развёртывания и эксплуатации микросервисных приложений

#### Готовность

к промышленной эксплуатации с надлежащим уровнем качества и выполнением всех регуляторных и иных требований








# Из каких компонентов складывается ТСО K8s-платформы?



## Компоненты совокупной стоимости владения K8s-платформой









# Как оценить вклад каждого компонента и на что обратить внимание?



## Начнём с простого

#### Где взять?

• Спецификация от поставщика

#### На что обратить внимание?

- Соответствие метрик лицензирования
- Соответствие срока услуг тех. поддержки горизонту расчёта
- Соответствие срока действия подписки горизонту расчёта

#### Что делать с бессрочными лицензиями?

 Считать приведённую к периоду (году) стоимость лицензии в соответствии с принятой учётной политикой

# Как учитывать ПНР, работы по миграции и обучение от внешнего поставщика?

 Закладывать стоимость таких работ в период (год) выполнения Лицензии ПО

Тех. поддержка ПО

ПНР и миграция

Затраты на обучение персонала



...или считать стоимость всего перечисленного инвестицией (в трансформационном сценарии)

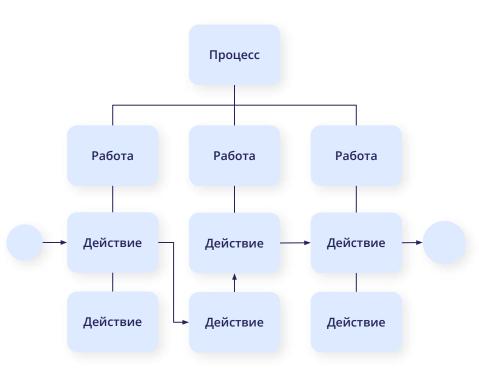
## Теперь посложнее трудозатраты

Трудозатраты дают до 20 % TCO Kubernetes-платформы (DIY)

#### О каких трудозатратах речь?

 О тех, которые требуются для предоставления ценности внутренним потребителям ресурсов платформы

#### Что создаёт ценность?


• Готовый к развёртыванию рабочих нагрузок production-grade K8s-кластер на платформе

#### Какие задачи учитывать?

 Все, которые выполняются при создании production-grade K8s-кластера на платформе и его последующем сопровождении за период расчёта

#### Какую методику можно использовать?

 Для оценки трудозатрат можно использовать метод сервисных операций Трудозатраты (Day-0/1) Трудозатраты (Day-2)

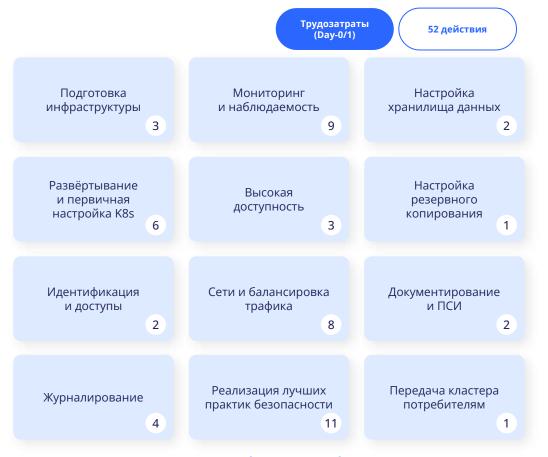


# **Перечень** типовых действий

#### Где взять?

- Экспертная оценка
- Исторический опыт
- Вендор или сообщества

#### Какие показатели учитывать?


- Трудозатраты на действие
- Время ожидания (трудоёмкость != продолжительность, есть ещё согласования и, в теории, параллелизм)

#### На что обратить внимание?

 На адекватное масштабирование по объектам трудозатрат при расчёте сценария роста

#### Как превратить трудозатраты в деньги?

• Покажу на следующих слайдах



Предоставление production-grade K8s-кластера

# **Перечень** типовых действий

#### Где взять?

- Экспертная оценка
- Исторический опыт
- Вендор или сообщества

#### Какие показатели учитывать?

- Трудозатраты на действие
- Время ожидания (трудоёмкость != продолжительность, есть ещё согласования и, в теории, параллелизм)
- Частота действий за период

#### На что обратить внимание?

 На адекватное масштабирование по объектам трудозатрат при расчёте сценария роста



Сопровождение production-grade K8s-кластера

# Частота типовых действий

#### Трудозатраты (Day-2)

### Сопровождение production-grade K8s-кластера

| Сколько раз<br>выполняется за 1 год | Планирование ресурсов                                                                                                                                                                                          |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                   | Обновление версии Kubernetes.<br>Предварительная проверка возможности применения обновления                                                                                                                    |
| 3                                   | Плановое обновление всех инфраструктурных<br>компонентов, установленных в day 0 – day 1                                                                                                                        |
| 12                                  | Отслеживание ручных изменений инфраструктуры.<br>Контроль и восстановление конфигураций при расхождении ожидаемой конфигурации<br>инфраструктуры с реальной. Повторный конверж инфраструктуры, если необходимо |
| 5                                   | Внеплановый патчинг кластера (обновления безопасности, фиксы CVE и так далее)                                                                                                                                  |
| 12                                  | Периодическая проверка утилизируемости узлов и их переупаковка<br>для более рационального использования ресурсов (descheduler)                                                                                 |
| 2                                   | Раскатка проектов по шаблону при необходимости выдачи инфраструктуры новой команде (реквесты, лимиты, квоты, права, политики)                                                                                  |
| 3                                   | Пересоздание master-узлов при проведении любых операций с ними                                                                                                                                                 |
| 26                                  | Горизонтальное масштабирование подов приложений<br>в зависимости от приходящей нагрузки                                                                                                                        |
| 4                                   | Расследование инцидентов и Root Cause Analysis                                                                                                                                                                 |
| 365                                 | Выполнение резервного копирования                                                                                                                                                                              |

# Драйверы трудозатрат

Трудозатраты Трудозатраты (Day-0/1) (Day-2)

Предоставление и сопровождение production-grade K8s-кластера

Кластер К8s

73

Узел кластера К8s

4

Команда разработки

2

Проект / NS

Приложение

1

Рersistent Volume



## Превращаем трудозатраты в деньги

Трудозатраты (Day-0/1) Трудозатраты (Day-2)

#### Предоставление и сопровождение production-grade K8s-кластера

| 1                      | Период | Трудо-<br>затраты,<br>часы |
|------------------------|--------|----------------------------|
| Имеем на входе         | Год 1  | 1726,3                     |
| трудозатраты           | Год 2  | 2928,6                     |
| по периодам<br>в часах | Год 3  | 4158,8                     |
|                        | Год 4  | 5389,1                     |
|                        | Год 5  | 6619,3                     |
|                        |        |                            |

2

И среднюю зарплату инженера («DevOps»), допустим 280 000 руб. net в месяц + соцпакет, эквивалентный 75 000 руб. в год 3

Считаем полные годовые затраты на штатную единицу

1813

рабочих часов (2025 год с учётом отпуска)

**2950** рублей в час (не ИТ-компания)

2355 рублей в час (ИТ-компания)

10 %

годовая индексация ФОТ

**79,2 МЛН** рублей (не ИТ-компания)

**61,9 МЛН** рублей (ИТ-компания)

| Зарплата по ШЕ<br>(DevOps–инженер) (net)               | 280 000 ₽   |
|--------------------------------------------------------|-------------|
| Зарплата за 12 месяцев (net)                           | 3 360 000 ₽ |
| НДФЛ по ставке 13 %                                    | 312 000 ₽   |
| НДФЛ по ставке 15 %                                    | 219 310 ₽   |
| НДФЛ по ставке 18 %                                    | 0₽          |
| Зарплата за 12 месяцев (gross)                         | 3 891 310 ₽ |
| Облагаемая база для страховых взносов по ставке 30 %   | 2 759 000 ₽ |
| Облагаемая база для страховых взносов по ставке 15,1 % | 3 615 410 ₽ |
| Страховые взносы (не ИТ-<br>компания)                  | 1 373 627 ₽ |
| Страховые взносы<br>(ИТ-компания, 7,6 %)               | 295 740₽    |
| Взносы на травматизм (0,2 %)                           | 7 783 ₽     |
| Всего взносов (не ИТ-компания)                         | 1 381 410 ₽ |
| Всего взносов (ИТ-компания)                            | 303 522₽    |
| Социальный пакет, в год                                | 75 000 ₽    |
| Всего затраты на ШЕ в год<br>(не ИТ-компания)          | 5 347 720 ₽ |
| Всего затраты на ШЕ в год (ИТ-компания)                | 4 269 833 ₽ |

# Стоимость базовой **инфраструктуры**





#### Инфраструктура даёт до 15 % TCO Kubernetes-платформы (DIY, on-premise)

ТСО базовой инф-ры

#### Какие могут быть сценарии для базовой инфраструктуры?

- Облако провайдера (в т. ч. dedicated-инфраструктура и периферийные сценарии)
- Частное облако (статические или динамические ВМ)
- Bare-metal-серверы

#### Какие показатели учитывать?

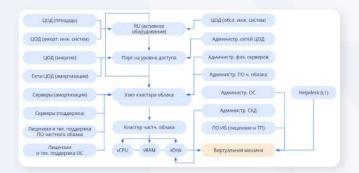
• Полную стоимость инфраструктурных ресурсов BM (CPU/RAM/Disk)

#### Где их взять?

- Облако провайдера из спецификации/«калькулятора»
- Собственные ресурсы посчитать, учтя затраты на площади и инженерные системы ЦОД, энергию, серверы, СХД, сетевое оборудование, ПО, ФОТ

#### На что обратить внимание?

- Привести стоимость ресурсных единиц в термины спецификации узлов К8s-кластеров
- Заложить инфляторы в прогноз затрат будущих периодов


# Как посчитать стоимость базовой инфраструктуры

TCO базовой инф-ры

Частное облако на HCI — считаем стоимость vCPU/vRAM/vDisk (в год)



# На что обратить внимание?





# Целевой показатель утилизации для всех ресурсов



• Стойки, порты, CPU, RAM

#### Учесть затраты энергии на охлаждение и СГЭ

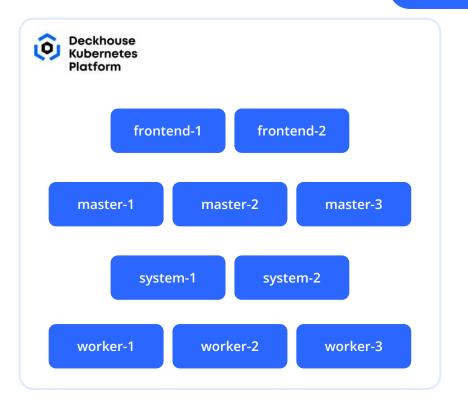
• Коэффициент PUE

#### Приведение затрат на ФОТ

- По методу сервисных операций
- По штатному расписанию (нормирование)
- По бенчмаркам (например, ITKMD от Gartner)

#### Амортизация

- Оборудование и бессрочные лицензии
- Срок и метод (линейно или ускоренно) учётная политика


#### Распределение стоимости кластера между vCPU и vRAM

• 80 % на vCPU, 20 % на vRAM

#### Стоимость vDISK для HCI

- Выделить стоимость носителей из стоимости приобретения серверов
- Учесть оверхеды, penatly, резервы и пр., приводить всё к стоимости GB/TB полезного пространства в год

| Frontend node         | Master node            |
|-----------------------|------------------------|
| 2 vCPU                | 8 vCPU                 |
| 4GB vRAM              | 16GB vRAM              |
| 50GB vDisk            | 60GB vDisk             |
| 49 615 руб. в 1-й год | 90 234 руб. в 1-й год  |
|                       |                        |
| System node           | Worker node            |
| System node<br>8 vCPU | Worker node<br>18 vCPU |
| ·                     |                        |
| 8 vCPU                | 18 vCPU                |



<sup>\*</sup> Пример расчёта

## **Потери производительности труда**





# Потери производительности труда потребителей дают до 25 % TCO

Производит. труда

#### Когда возникают потери производительности труда?

 В ситуациях, когда потребители платформы не могут выполнить свои рабочие задачи из-за недоступности сервисов платформы

#### Как оценить потери производительности труда?

 Исходя из оценок продолжительности тех типовых действий по внедрению и сопровождению платформы, которые ограничивают доступность платформенных сервисов потребителям

#### Где взять оценки продолжительности типовых действий?

• Экспертная оценка, исторический опыт, вендор или сообщества

#### На что обратить внимание?

- Время получения согласований (▲) и возможность параллелизма (▼)
- Потери производительности труда != 100 % в период ожидания готовности сервисов платформы
- Количество затронутых потребителей сервисов платформы

#### Превращаем ожидание в деньги

#### Потери производительности труда потребителей выражаем через ФОТ

| 1                                   | Период | Время<br>ожидания,<br>часы |
|-------------------------------------|--------|----------------------------|
| Имеем на входе                      | Год 1  | 643,1                      |
| общее время                         | Год 2  | 1368,1                     |
| ожидания по                         | Год 3  | 2265,0                     |
| периодам в часах<br>всех затронутых | Год 4  | 3303,8                     |
| потребителей                        | Год 5  | 4484,5                     |
|                                     |        |                            |

2

И среднюю зарплату разработчика, допустим 300 000 руб.net в месяц + соцпакет, эквивалентный 75 000 руб. в год 3

Принимаем потерю 30 % производительности труда в период ожидания

1813

рабочих часов (2025 год с учётом отпуска)

**3129 2522** рубля в час (ИТ-компания) (ИТ-компания)

10 %

годовая индексация ФОТ

**27,5 МЛН** рублей (не ИТ-компания)

**22,2 МЛН** рублей (ИТ-компания)

| Зарплата разработчика<br>приложений (net)              | 300 000 ₽   |
|--------------------------------------------------------|-------------|
| Зарплата за 12 месяцев (net)                           | 3 600 000 ₽ |
| НДФЛ по ставке 13 %                                    | 312 000 ₽   |
| НДФЛ по ставке 15 %                                    | 260 690 ₽   |
| НДФЛ по ставке 18 %                                    | 0₽          |
| Зарплата за 12 месяцев (gross)                         | 4 172 690 ₽ |
| Облагаемая база для страховых взносов по ставке 30 %   | 2 759 000 ₽ |
| Облагаемая база для страховых взносов по ставке 15,1 % | 3 896 790 ₽ |
| Страховые взносы (не ИТ-компания)                      | 1 416 115 ₽ |
| Страховые взносы<br>(ИТ-компания, 7,6 %)               | 317 124 ₽   |
| Взносы на травматизм (0,2 %)                           | 8 345 ₽     |
| Всего взносов (не ИТ-компания)                         | 1 424 461 ₽ |
| Всего взносов (ИТ-компания)                            | 325 470 ₽   |
| Социальный пакет, в год                                | 75 000 ₽    |
| Всего затраты на comp&ben<br>в год (не ИТ-компания)    | 5 672 150 ₽ |
| Всего затраты на comp&ben<br>в год (ИТ-компания)       | 4 573 159 ₽ |

# **Нереализованный** функционал





# Упущенная выгода от недореализации цифровых инициатив даёт до 50 % TCO

Нереализованный функционал

#### Когда возникает упущенная выгода?

 В ситуациях, когда разработчики ПО не могут выполнить свои рабочие задачи из-за недоступности сервисов платформы и не выпускают фичи, имеющие влияние на финансовый результат предприятия

#### Как оценить упущенную выгоду?

 Исходя из оценок продолжительности тех типовых действий по внедрению и сопровождению платформы, которые ограничивают доступность платформенных сервисов разработчикам ПО

#### На что обратить внимание?

- Доля выручки от цифровых инициатив в общей выручке предприятия
- Доля удачных фичей (имеющих влияние на фин. результат)
- % влияния удачной фичи на выручку
- Трудоёмкость и продолжительность спринта для команды разработки
- Число фич с новым функционалом за спринт

#### Потери производительности труда потребителей

| 1                                          | Период | Время ожидания,<br>часы |
|--------------------------------------------|--------|-------------------------|
|                                            | Год 1  | 507,6                   |
| Имеем на входе время                       | Год 2  | 543,6                   |
| ожидания готовности<br>платформы командами | Год 3  | 607,6                   |
| разработки                                 | Год 4  | 671,6                   |
| •                                          | Год 5  | 735,6                   |

| 2                                   | Период | Несозданные<br>фичи |
|-------------------------------------|--------|---------------------|
| Ta                                  | Год 1  | 2                   |
| Трудоёмкость<br>спринта для команды | Год 2  | 2                   |
| разработки                          | Год 3  | 2                   |
| Кол-во фич за спринт                | Год 4  | 2                   |
|                                     | Год 5  | 4                   |
|                                     |        |                     |

3

- Общая выручка предприятия за год 52 млрд рублей
- Доля выручки от реализации цифровых инициатив — 10 %
- Доля фич, имеющих влияние на финансовый результат — 33 %\*
- Влияние каждой удачной фичи на «цифровую» выручку 1 %\*

# 156 млн рублей

упущенная выгода за 5 лет

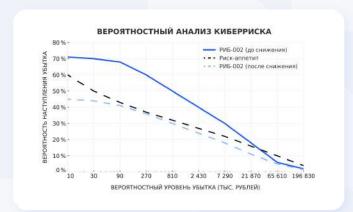
# Подверженность рискам ИБ



Метод основан на субъективном мнении эксперта, противоречивый, с большой остаточной неопределённостью. На основе полученных данных сложно построить общую картину профиля риска, финансовое планирование будет затруднено.



# Качественная оценка (быстро, но «экспертно»)

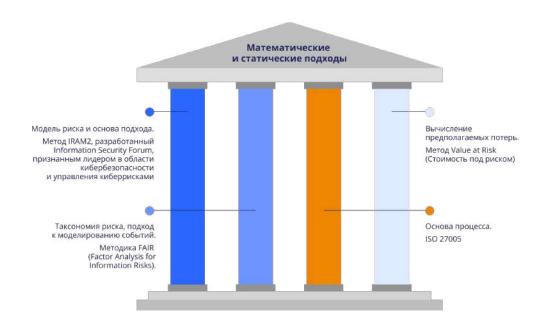

Подверженность рискам ИБ

| Тип инцидента | Вероятность<br>возникновения за 5 лет | Ожидаемые потери,<br>млн руб. |
|---------------|---------------------------------------|-------------------------------|
| Α             | 2 %                                   | 0,01                          |
| Б             | 5 %                                   | 5                             |
| В             | 20 %                                  | 50                            |
| Γ             | 30 %                                  | 5                             |
| Д             | 30 %                                  | 100                           |

42 млн рублей

вероятные потери за 5 лет

# Подверженность рискам ИБ




Метод основан на данных и моделировании, непротиворечивый, повторяемый, гибкий и масштабируемый. Легко встраивается в любую корпоративную модель управления рисками, позволяет принимать решения о стратегическом инвестировании и страховании риска.



# Количественная оценка (сложно, но заметно точнее)

Подверженность рискам ИБ



# Простой информационных систем (prod)





#### Когда возникают потери?

 В ситуациях, когда промышленно эксплуатируемая информационная система полностью или частично неработоспособна из-за сбоя платформы

#### Как оценить потери?

• Провести BIA (Business Impact Analysis), выявить зависимости, вероятности сбоев и возможные потери при таких сбоях для каждой информационной системы, компоненты которой промышленно эксплуатируются на платформе

Простой инф. систем



# Пример сравнения TCO: DIY-платформа vs Deckhouse Kubernetes Platform



## Как будем сравнивать?



- 1. Определяем сценарии
- 2. Задаём параметры сценариев
- 3. Задаём базовые значения для расчётов
- 4. Считаем затраты и потери по каждому компоненту
- 5. Сравниваем итоги



# Сценарии сравнения TCO за 5 лет, on-premise

|                       | Платформа Do-lt-Yourself                                                                                                                   | Deckhouse Kubernetes Plaftorm EE                                                                                                            |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Кластеров K8s         | От 3 (1-й год ) до 8 (5-й год)                                                                                                             | От 3 (1-й год ) до 8 (5-й год)                                                                                                              |  |  |
| Узлов К8ѕ             | От 69 (1-й год) до 184 (5-й год)                                                                                                           | От 69 (1-й год) до 184 (5-й год)                                                                                                            |  |  |
| Спецификации<br>узлов | Master: 2 vCPU/8GB vRAM/60GB vDisk FE: 2 vCPU/4GB vRAM/50GB vDisk  System: 2 vCPU/4GB vRAM/50GB vDisk Worker: 8 vCPU/16GB vRAM/300GB vDisk | Master: 2 vCPU/8GB vRAM/60GB vDisk FE: 2 vCPU/4GB vRAM/50GB vDisk  System: 8 vCPU/16GB vRAM/60GB vDisk Worker: 8 vCPU/16GB vRAM/300GB vDisk |  |  |
| Объектов              | Namespaces: от 21 до 65 Persistent Volumes: от 48 до 128  Deployments: от 30 до 80                                                         | Namespaces: στ 21 до 65 Persistent Volumes: στ 48 до 128  Deployments: στ 30 до 80                                                          |  |  |
| Команд<br>разработки  | От 3 (1-й год) до 8 (5-й год)                                                                                                              | От 3 (1-й год) до 8 (5-й год)                                                                                                               |  |  |
| Пользователей         | От 24 (1-й год) до 64 (5-й год)                                                                                                            | От 24 (1-й год) до 64 (5-й год)                                                                                                             |  |  |
| Инцидентов<br>c RCA   | От 12 (1-й год) до 32 (5-й год)                                                                                                            | От 12 (1-й год) до 32 (5-й год)                                                                                                             |  |  |

# Базовые значения для расчётов

| Зарплаты<br>(net, в месяц,      | руб.)          | Инфрастру<br>(рублей в го <i>р</i> |       | Команды             |       | Расчёт потер          | ОЬ           | Лицензи<br>и ТП DKF |            |
|---------------------------------|----------------|------------------------------------|-------|---------------------|-------|-----------------------|--------------|---------------------|------------|
| DevOps                          | 300 000        | 1 vCPU                             | 4 168 | Участников          | 8     | Производ.             | 30 %         | Редакция            | Enterprise |
| Разработчик                     | 350 000        | 1GB vRAM                           | 1 389 | Продолжит.          | 80 ч. | труда<br>Выручка      | 52           | DKP EE              |            |
| Админ. инфр-<br>ры              | 250 000        | 1GB vDisk                          | 21    | спринта<br>Фич      | 2     | в год                 | млрд<br>руб. | TП DKP EE<br>Стд+   |            |
| Helpdesk                        | 180 000        | ПОИБ (ВМ) 24 000                   |       | за спринт<br>Из них | _     | Доля «цифры»          | 10 %         | CIA.                |            |
| Индексация                      | 10 %<br>в год  |                                    |       |                     | 33 %  | Рост цифр.<br>выручки | 1 %          |                     |            |
| Рабочих<br>часов                | 1 813<br>в год |                                    |       |                     |       | от значимой<br>фичи   |              |                     |            |
| + соцпакет<br>75 000 руб. в год |                |                                    |       |                     |       |                       |              |                     |            |

# Собираем всё вместе (DIY)

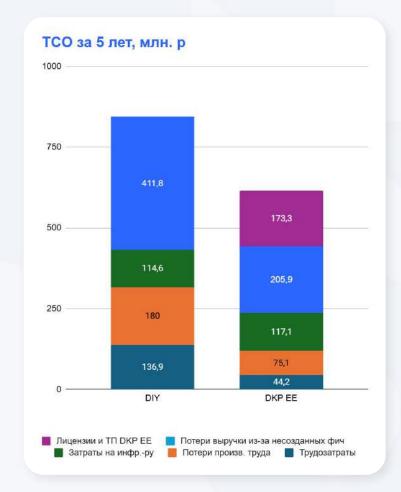
|                                                        | Год 1  | Год 2  | Год 3  | Год 4  | Год 5  |
|--------------------------------------------------------|--------|--------|--------|--------|--------|
| Day 0 (часов)                                          | 1 154  | 357    | 357    | 357    | 357    |
| Day 1/2 (часов)                                        | 4 157  | 5 158  | 6 415  | 7 672  | 10 315 |
| Ожидание<br>готовности (часов)                         | 22 661 | 13 220 | 18 062 | 23 517 | 52 882 |
| Несозданные фичи                                       | 6      | 4      | 4      | 4      | 6      |
| Трудозатраты<br>(млн руб.) <sup>*</sup>                | 15,7   | 17,9   | 24,2   | 31,5   | 47,6   |
| Потери произв.<br>труда (млн руб.)                     | 24,3   | 15,6   | 23,4   | 33,6   | 83,1   |
| Затраты на инфр-ру<br>(млн руб.)                       | 11,7   | 16,4   | 21,5   | 27,1   | 37,9   |
| Потери выручки из-<br>за несозданных<br>фич (млн руб.) | 103    | 68,6   | 68,6   | 68,6   | 103    |

<sup>\*</sup> Предполагаем, что DevOps-специалисты классно разбираются в K8s и точно знают, что делают



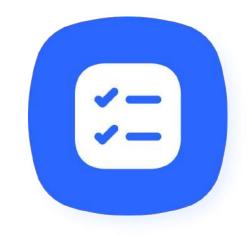
## Первая российская платформа для создания K8s-кластеров в любой ИТ-инфраструктуре и управления ими

- Сокращает время подготовки среды разработки до 15 раз
- Автоматизирует до 80 % ручных операций
- Позволяет обеспечить SLA инфраструктуры до 99,99 %


#### Собираем всё вместе (DKP)

|                                                        | Год 1 | Год 2 | Год 3 | Год 4 | Год 5  |
|--------------------------------------------------------|-------|-------|-------|-------|--------|
| Day 0 (часов)                                          | 437   | 136   | 136   | 136   | 136    |
| Day 1/2 (часов)                                        | 1 411 | 1 637 | 2 026 | 2 415 | 3 274  |
| Ожидание<br>готовности (часов)                         | 9 779 | 5 516 | 7 463 | 9 637 | 22 065 |
| Несозданные фичи                                       | 4     | 2     | 2     | 2     | 2      |
| Трудозатраты<br>(млн руб.)*                            | 5,5   | 5.7   | 7,7   | 10,0  | 15,3   |
| Потери произв.<br>труда (млн руб.)                     | 10,5  | 6,5   | 9,7   | 13,8  | 34,7   |
| Затраты на инфр-ру<br>(млн руб.)                       | 11,7  | 16,4  | 21,5  | 27,1  | 37,9   |
| Потери выручки из-<br>за несозданных<br>фич (млн руб.) | 68,6  | 34,3  | 34,3  | 34,3  | 34,3   |
| Лицензии и ТП<br>DKP EE (млн руб.)                     | 20,0  | 26,7  | 33,3  | 40,0  | 53,3   |

#### Сравниваем ТСО за 5 лет


|                                                        | DIY   | DKP EE        |  |
|--------------------------------------------------------|-------|---------------|--|
| Трудозатраты<br>(млн руб.)                             | 136,9 | 44,2 (-67 %)  |  |
| Потери произв.<br>труда (млн руб.)                     | 180,0 | 75,1 (-58 %)  |  |
| Затраты на инфр-ру<br>(млн руб.)                       | 114,6 | 117,1 (+2 %)  |  |
| Потери выручки из-<br>за несозданных<br>фич (млн руб.) | 411,8 | 205,9 (-50 %) |  |
| Лицензии и ТП<br>DKP EE (млн руб.)                     | 0     | 173,3         |  |
| Итого                                                  | 843,3 | 615,7 (-27 %) |  |

Как учли подверженность рискам ИБ? Как учли потери из-за незапланированного простоя?





# Оцениваем возврат инвестиций при переходе на Deckhouse Kubernetes Platform



#### Дано — федеральные предприятия, цифровые сервисы



#### Кластеры К8ѕ

DIY-платформы, частное облако

6

3xMaster: 2 vCPU/8GB vRAM/60GB vDisk

2xFE: 2 vCPU/4GB vRAM/50GB vDisk

2xSystem: 2 vCPU/4GB vRAM/50GB vDisk

6xWorker: 18vCPU/64GB vRAM/300GB vDisk



#### Прирост числа кластеров

Органический рост проектов и миграция из Docker

35 % в год

#### Зарплаты (net):

DevOps-инженер — 350 тыс. руб.; разработчик — 350 тыс. руб.; администратор базовой инфр-ры — 200 тыс. руб.; специалист Helpdesk (L1) — 150 тыс. руб.; соцпакет по всем ролям, ежегодный рост затрат на ФОТ (15 %) и средства (5 %)



#### Число команд разработки

Среднее число участников команды разработки — 6 человек

6

Продолжительность спринта — 80 рабочих часов, 1 фича (новый функционал) за спринт

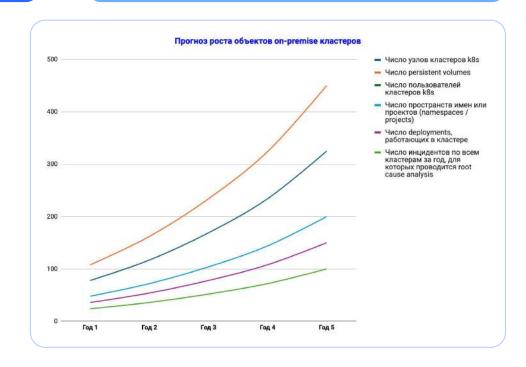
Применение практик и рекомендаций для внедрения и сопровождения production-grade K8s-кластеров (цель), линейный прирост числа объектов анализа

На проекты с ИТ-составляющей относятся 5 % выручки, каждая 3-я фича успешна и даёт инкремент в 0,1 % для «цифровой» выручки

#### Задача

Оценить финансовый эффект и возврат инвестиций при переходе с DIY–платформ на Deckhouse Kubernetes Platform

#### Сравнение сценариев роста за 5 лет

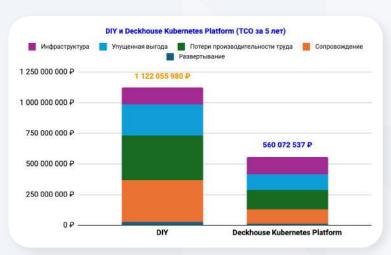

Сценарий 1 — органический рост существующих DIY-платформ с соблюдением лучших практик

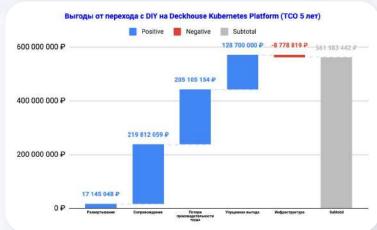
VS

Сценарий 2 — переход на DKP в первый год анализа и органический рост во второй и последующие голь

- В сценарии 1 для действий Day 0/1 учитываем только новые кластеры, которые создаются начиная со второго года.
- В сценарии 2 учитываем все кластеры и все действия по внедрению и сопровождению Deckhouse Kubernetes Platform
- В обоих сценариях предполагаем равномерный рост числа рабочих нагрузок и объектов платформы







## Сравнение затрат и потерь по двум сценариям за 5 лет \*

|                                                        | Сценарий 1 (DIY) | Сценарий 2<br>(переход на DKP) |  |
|--------------------------------------------------------|------------------|--------------------------------|--|
| Трудозатраты<br>(млн руб.)                             | 367,2            | 130,3 (-64 %)                  |  |
| Потери произв.<br>труда (млн руб.)                     | 362,3            | 157,3 (-57 %)                  |  |
| Затраты на инфр-ру<br>(млн руб.)                       | 135,0            | 143,8 (+7 %)                   |  |
| Потери выручки из-<br>за несозданных<br>фич (млн руб.) | 257,4            | 128,7 (-50 %)                  |  |
| Итого (без учёта<br>лицензий, ТП и др.)                | 1 122,1          | 560,1 (-50 %)                  |  |

**562** млн руб.

суммарные выгоды от перехода на DKP за 5 лет





<sup>\*</sup> Считаем инвестициями стоимость лицензий DKP, технической поддержки, ПНР и обучения

#### Оценка объёма инвестиций и показателей возврата\*

|                                                          | Год 1  | Год 2 | Год 3 | Год 4 | Год 5 |
|----------------------------------------------------------|--------|-------|-------|-------|-------|
| Выгоды всего («сценарий 1» минус «сценарий 2»), млн руб. | -0,1   | 65,5  | 94,1  | 148,9 | 253,5 |
| Инвестиции, млн руб.                                     | 260    | 0     | 0     | 0     | 0     |
| Денежный поток, млн руб.                                 | -260,1 | 65,5  | 94,1  | 148,9 | 253,5 |

<sup>\*</sup> Считаем инвестициями стоимость лицензий DKP, технической поддержки, ПНР и обучения

#### DECKHOUSE PROFESSIONAL SERVICES

Услуги по внедрению и адаптации решений экосистемы Deckhouse, миграции приложений и оптимизации управления их жизненным циклом





#### Глубокая экспертиза

Одна из лучших в РФ экспертиза в Kubernetes и Deckhouse, прямой доступ к разработчикам и поддержке L3 Deckhouse



#### Реализация «под ключ»

От сбора и аудита требований до проектирования, внедрения, интеграции и передачи знаний



#### Адаптация

Настройка и оптимизация Deckhouse под уникальные потребности бизнеса, ИТ и ИБ



#### Time-to-value

Использование отработанных методологий и лучших практик для быстрого и надежного внедрения Deckhouse, максимально быстрый возврат инвестиций



#### Передача знаний

Зрелый подход к оформлению документации, вебинары для администраторов и пользователей Deckhouse, обучение и сертификация в Deckhouse Academy

#### Итого





#### Изучили

из чего складывается совокупная стоимость владения Kubernetes-платформой



#### Посмотрели

на практические аспекты расчёта компонентов TCO Kubernetes-платформы



#### Монетизировали

некоторую часть ценности, которую создаёт Deckhouse Kubernetes Platform



#### Посчитали

возврат инвестиций при переходе с DIY на DKP EE в сценарии роста инфраструктуры

#### Бонус для слушателей



Анкета

### Deckhouse

## Получите базовую оценку TCO вашей DIY Kubernetes-платформы \* от экспертов «Фланта»

- 1. Заполните небольшую анкету, перейдя по QR-коду или ссылке в чате трансляции
- 2. Мы вернёмся к вам с расчётом базового TCO\* и при необходимости пригласим на встречу для более глубокой проработки модели в индивидуальном формате

<sup>\*</sup> Ограничения базовой модели расчёта ТСО:

<sup>•</sup> применимо только для DIY-платформ;

<sup>•</sup> учитывает только оп-ргет-кластеры.



## Спасибо за внимание!

Готовы ответить на ваши вопросы



contact@deckhouse.ru



+7 (495) 721-10-27



deckhouse.ru



**Telegram** 

TCO ДЛЯ СТО СЧИТАЕМ СОВОКУПНУЮ СТОИМОСТЬ ВЛАДЕНИЯ KUBERNETES-ПЛАТФОРМОЙ